Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data
نویسندگان
چکیده
Field spectrometer data and leaf area index (LAI) measurements were collected on the same day as the Earth Observing 1 satellite overpass for a study site in the Patagonia region of Argentina. We first simulated the total at-sensor radiances using MODTRAN 4 for atmospheric correction. Then ground spectroradiometric measurements were used to improve the retrieved reflectance for each pixel on the Hyperion image. Using the improved pixel-based surface reflectance spectra, 12 two-band “vegetation indices (VIs)” were constructed using all available 168 Hyperion bands. Finally, we evaluated the correlation of each possible vegetation index with LAI measurements to determine the most effective bands for forest LAI estimation. The experimental results indicate that most of the important hyperspectral bands with high 2 are related to bands in the shortwave infrared (SWIR) region and some in the near-infrared (NIR) region. The bands are centered near 820, 1040, 1200, 1250, 1650, 2100, and 2260 nm with bandwidths ranging from 10–300 nm. It is notable that the originally defined VIs that use red and NIR bands did not produce higher correlation with LAI than VIs constructed with bands in SWIR and NIR regions.
منابع مشابه
High density biomass estimation: Testing the utility of Vegetation Indices and the Random Forest Regression algorithm
Accurate estimates of wetland above ground biomass (AGB) have increasingly been identified as a critical component for an efficient wetland monitoring and management system. Multispectral remote sensing based indices have proven inadequate in estimating biomass especially at high canopy density. In this study we investigated the use of vegetation indices derived from field hyperspectral data to...
متن کاملEvaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages
Hyperspectral reflectance derived vegetation indices (VIs) are used for non-destructive leaf area index (LAI) monitoring for precise and efficient N nutrition management. This study tested the hypothesis that there is potential for using various hyperspectral VIs for estimating LAI at different growth stages of rice under varying N rates. Hyperspectral reflectance and crop canopy LAI measuremen...
متن کاملVegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest
Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs) are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vege...
متن کاملComparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index
In this study, a comparative analysis of capabilities of three sensors for mapping forest crown closure (CC) and leaf area index (LAI) was conducted. The three sensors are Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). A total of 38 mixed coniferous forest CC and 38 LAI measurements were collected at Blod...
متن کاملHyperspectral Vegetation Indices for Estimation of Leaf Area Index
Spectral vegetation indices are frequently used to estimate vegetation biophysical/biochemical characteristics. In general they have been proposed to reduce spectral effects caused by external factors such as the atmosphere and the soil background. This study evaluated narrow band vegetation indices for estimation of vegetation leaf area index. The study takes advantage of using a dataset colle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 41 شماره
صفحات -
تاریخ انتشار 2003